일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | |||
5 | 6 | 7 | 8 | 9 | 10 | 11 |
12 | 13 | 14 | 15 | 16 | 17 | 18 |
19 | 20 | 21 | 22 | 23 | 24 | 25 |
26 | 27 | 28 | 29 | 30 | 31 |
- alembic
- 위상 정렬
- 개발자
- 강한 연결 요소
- 가우스 소거법
- 신입
- Django
- python
- 알고리즘
- 이분 탐색
- api서버
- 데이터베이스
- 테일러 급수
- 아파치
- 리트코드
- sqlalchemy
- BFS
- 백준
- 파이썬
- 수학
- 웹서버
- C언어
- SQL
- scc
- 취업
- flask
- 구성적
- MYSQL
- 백엔드
- FastAPI
- Today
- Total
목록수학 (2)
Devlog
테일러 급수 시리즈 1. 테일러 급수 전개하기 2. 테일러 다항식 오차 계산하기 소개 테일러 급수는 어떤 함수의 값(임의의 지점의 값)을 무한한 항의 합으로 나타내는 방법입니다. 즉, 함수를 다항식의 형태로 변환을 하는 방식이며 이때 근사값을 구할 수 있습니다. 테일러 급수를 사용하는 방법만 알면, 수학 모듈이 아니면 직접 구하기가 힘든 제곱근이나 삼각함수 등을 테일러 급수를 활용해 수학 관련 모듈 없이 직접 하드코딩 할 수 있습니다. 이 블로그에서의 테일러 급수 시리즈는 (1)테일러 급수 전개하기, (2)테일러 다항식 오차 계산하기 이렇게 두 챕터로 나눠서 진행합니다. 조건 하지만 모든 함수들을 테일러 급수로 나타낼 수 없습니다. 위의 공식에서 나타냈듯이, 미분을 사용하고 있기 때문에 임의의 지점에서 ..
소개 중학교 수학에서 한번 씩 봤을 법한 연립방정식 이 문제를 푸는 방법은 2번 째 식에서 2를 곱해 2x + 2y = 6을 만든 다음 위의 식에 뺄셈을 진행하면 2y = 4가 되므로 y는 2가 됩니다. 그 다음 x +y = 3에 y = 2을 대입하면 x = 1이 되므로, 해는 x = 1, y = 2 이 됩니다. 이렇게 미지수가 두개인 경우, 둘 중 하나를 소거해서 다른 미지수의 해를 찾은 다음, 나머지 미지수의 해를 찾으면 됩니다. 그렇다면 미지수가 n개인 방정식 이 n개가 있는 연립 방정식. 이건 어떻게 풀어야 할까요? 가우스 소거법은 이렇게 무수히 많은 미지수와 방정식에 대한 풀이법을 알려줍니다! 종류 순수 가우스 소거법 피봇팅 가우스 소거법 가우스 조르단 소거법 피봇팅 가우스 조르단 소거법 대표적..